PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bicmb-P2.5c.2AC.2SH

Theorem bicmb-P2.5c.2AC.2SH 122
Description: Another Deductive Form of bicmb-P2.5c 119.
Hypotheses
Ref Expression
bicmb-P2.5c.2AC.2SH.1 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
bicmb-P2.5c.2AC.2SH.2 (𝛾₁ → (𝛾₂ → (𝜓𝜑)))
Assertion
Ref Expression
bicmb-P2.5c.2AC.2SH (𝛾₁ → (𝛾₂ → (𝜑𝜓)))

Proof of Theorem bicmb-P2.5c.2AC.2SH
StepHypRef Expression
1 bicmb-P2.5c.2AC.2SH.2 . 2 (𝛾₁ → (𝛾₂ → (𝜓𝜑)))
2 bicmb-P2.5c.2AC.2SH.1 . . . 4 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
3 bicmb-P2.5c 119 . . . . . . 7 ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
43axL1.SH 30 . . . . . 6 (𝛾₂ → ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓))))
54axL1.SH 30 . . . . 5 (𝛾₁ → (𝛾₂ → ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))))
65rcp-FR2.SH 42 . . . 4 ((𝛾₁ → (𝛾₂ → (𝜑𝜓))) → (𝛾₁ → (𝛾₂ → ((𝜓𝜑) → (𝜑𝜓)))))
72, 6ax-MP 14 . . 3 (𝛾₁ → (𝛾₂ → ((𝜓𝜑) → (𝜑𝜓))))
87rcp-FR2.SH 42 . 2 ((𝛾₁ → (𝛾₂ → (𝜓𝜑))) → (𝛾₁ → (𝛾₂ → (𝜑𝜓))))
91, 8ax-MP 14 1 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bitrns-P2.6c  126
  Copyright terms: Public domain W3C validator