| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bicmb-P2.5c.2AC.2SH | |||
| Description: Another Deductive Form of bicmb-P2.5c 119. |
| Ref | Expression |
|---|---|
| bicmb-P2.5c.2AC.2SH.1 | ⊢ (𝛾₁ → (𝛾₂ → (𝜑 → 𝜓))) |
| bicmb-P2.5c.2AC.2SH.2 | ⊢ (𝛾₁ → (𝛾₂ → (𝜓 → 𝜑))) |
| Ref | Expression |
|---|---|
| bicmb-P2.5c.2AC.2SH | ⊢ (𝛾₁ → (𝛾₂ → (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicmb-P2.5c.2AC.2SH.2 | . 2 ⊢ (𝛾₁ → (𝛾₂ → (𝜓 → 𝜑))) | |
| 2 | bicmb-P2.5c.2AC.2SH.1 | . . . 4 ⊢ (𝛾₁ → (𝛾₂ → (𝜑 → 𝜓))) | |
| 3 | bicmb-P2.5c 119 | . . . . . . 7 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 3 | axL1.SH 30 | . . . . . 6 ⊢ (𝛾₂ → ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓)))) |
| 5 | 4 | axL1.SH 30 | . . . . 5 ⊢ (𝛾₁ → (𝛾₂ → ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))))) |
| 6 | 5 | rcp-FR2.SH 42 | . . . 4 ⊢ ((𝛾₁ → (𝛾₂ → (𝜑 → 𝜓))) → (𝛾₁ → (𝛾₂ → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))))) |
| 7 | 2, 6 | ax-MP 14 | . . 3 ⊢ (𝛾₁ → (𝛾₂ → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓)))) |
| 8 | 7 | rcp-FR2.SH 42 | . 2 ⊢ ((𝛾₁ → (𝛾₂ → (𝜓 → 𝜑))) → (𝛾₁ → (𝛾₂ → (𝜑 ↔ 𝜓)))) |
| 9 | 1, 8 | ax-MP 14 | 1 ⊢ (𝛾₁ → (𝛾₂ → (𝜑 ↔ 𝜓))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: bitrns-P2.6c 126 |
| Copyright terms: Public domain | W3C validator |