PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  simpr-P2.9b.AC.SH

Theorem simpr-P2.9b.AC.SH 137
Description: Deductive Form of simpr-P2.9b 136.
Hypothesis
Ref Expression
simpr-P2.9b.AC.SH.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
simpr-P2.9b.AC.SH (𝛾𝜓)

Proof of Theorem simpr-P2.9b.AC.SH
StepHypRef Expression
1 simpr-P2.9b.AC.SH.1 . 2 (𝛾 → (𝜑𝜓))
2 simpr-P2.9b 136 . . . 4 ((𝜑𝜓) → 𝜓)
32axL1.SH 30 . . 3 (𝛾 → ((𝜑𝜓) → 𝜓))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑𝜓)) → (𝛾𝜓))
51, 4ax-MP 14 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  orelim-P2.11c  150  ndandel-P3.8  173
  Copyright terms: Public domain W3C validator