PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cmb-P2.9c.AC.2SH

Theorem cmb-P2.9c.AC.2SH 139
Description: Deductive Form of cmb-P2.9c 138.
Hypotheses
Ref Expression
cmb-P2.9c.AC.2SH.1 (𝛾𝜑)
cmb-P2.9c.AC.2SH.2 (𝛾𝜓)
Assertion
Ref Expression
cmb-P2.9c.AC.2SH (𝛾 → (𝜑𝜓))

Proof of Theorem cmb-P2.9c.AC.2SH
StepHypRef Expression
1 cmb-P2.9c.AC.2SH.2 . 2 (𝛾𝜓)
2 cmb-P2.9c.AC.2SH.1 . . . 4 (𝛾𝜑)
3 cmb-P2.9c 138 . . . . . 6 (𝜑 → (𝜓 → (𝜑𝜓)))
43axL1.SH 30 . . . . 5 (𝛾 → (𝜑 → (𝜓 → (𝜑𝜓))))
54rcp-FR1.SH 40 . . . 4 ((𝛾𝜑) → (𝛾 → (𝜓 → (𝜑𝜓))))
62, 5ax-MP 14 . . 3 (𝛾 → (𝜓 → (𝜑𝜓)))
76rcp-FR1.SH 40 . 2 ((𝛾𝜓) → (𝛾 → (𝜑𝜓)))
81, 7ax-MP 14 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  ndandi-P3.7  172
  Copyright terms: Public domain W3C validator