PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimr-P2.8b.SH

Theorem subimr-P2.8b.SH 131
Description: Inference from subimr-P2.8b 130.
Hypothesis
Ref Expression
subimr-P2.8b.SH.1 (𝜑𝜓)
Assertion
Ref Expression
subimr-P2.8b.SH ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem subimr-P2.8b.SH
StepHypRef Expression
1 subimr-P2.8b.SH.1 . 2 (𝜑𝜓)
2 subimr-P2.8b 130 . 2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
31, 2ax-MP 14 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  cmb-P2.9c  138
  Copyright terms: Public domain W3C validator