| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subimr-P2.8b | |||
| Description: Right Substitution Law for '→'. |
| Ref | Expression |
|---|---|
| subimr-P2.8b | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bifwd-P2.5a 111 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | imsubr-P1.7a.AC.SH 53 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
| 3 | birev-P2.5b 115 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | imsubr-P1.7a.AC.SH 53 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜓) → (𝜒 → 𝜑))) |
| 5 | 2, 4 | bicmb-P2.5c.AC.2SH 121 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: subimr-P2.8b.SH 131 |
| Copyright terms: Public domain | W3C validator |