PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimr-P2.8b

Theorem subimr-P2.8b 130
Description: Right Substitution Law for ''.
Assertion
Ref Expression
subimr-P2.8b ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem subimr-P2.8b
StepHypRef Expression
1 bifwd-P2.5a 111 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21imsubr-P1.7a.AC.SH 53 . 2 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
3 birev-P2.5b 115 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43imsubr-P1.7a.AC.SH 53 . 2 ((𝜑𝜓) → ((𝜒𝜓) → (𝜒𝜑)))
52, 4bicmb-P2.5c.AC.2SH 121 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  subimr-P2.8b.SH  131
  Copyright terms: Public domain W3C validator