PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cmb-L2.3.2SH

Theorem cmb-L2.3.2SH 100
Description: Inference from cmb-L2.3 99.
Hypotheses
Ref Expression
cmb-L2.3.2SH.1 𝜑
cmb-L2.3.2SH.2 𝜓
Assertion
Ref Expression
cmb-L2.3.2SH ¬ (𝜑 → ¬ 𝜓)

Proof of Theorem cmb-L2.3.2SH
StepHypRef Expression
1 cmb-L2.3.2SH.2 . 2 𝜓
2 cmb-L2.3.2SH.1 . . 3 𝜑
3 cmb-L2.3 99 . . 3 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
42, 3ax-MP 14 . 2 (𝜓 → ¬ (𝜑 → ¬ 𝜓))
51, 4ax-MP 14 1 ¬ (𝜑 → ¬ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  mbicmb-P2.1c  103  bijust-P2.2-L1  105
  Copyright terms: Public domain W3C validator