PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  mbicmb-P2.1c

Theorem mbicmb-P2.1c 103
Description: Motivation for Definition, Part C.
Hypotheses
Ref Expression
mbicmb-P2.1c.1 (𝜑𝜓)
mbicmb-P2.1c.2 (𝜓𝜑)
Assertion
Ref Expression
mbicmb-P2.1c ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))

Proof of Theorem mbicmb-P2.1c
StepHypRef Expression
1 mbicmb-P2.1c.1 . 2 (𝜑𝜓)
2 mbicmb-P2.1c.2 . 2 (𝜓𝜑)
31, 2cmb-L2.3.2SH 100 1 ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator