PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  mbirev-P2.1b

Theorem mbirev-P2.1b 102
Description: Motivation for Definition, Part B.
Hypothesis
Ref Expression
mbirev-P2.1b.1 ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))
Assertion
Ref Expression
mbirev-P2.1b (𝜓𝜑)

Proof of Theorem mbirev-P2.1b
StepHypRef Expression
1 mbirev-P2.1b.1 . 2 ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))
21simpr-L2.2b.SH 98 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator