PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  simpr-L2.2b.SH

Theorem simpr-L2.2b.SH 98
Description: Inference from simpr-L2.2b 97.
Hypothesis
Ref Expression
simpr-L2.2b.SH.1 ¬ (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
simpr-L2.2b.SH 𝜓

Proof of Theorem simpr-L2.2b.SH
StepHypRef Expression
1 simpr-L2.2b.SH.1 . 2 ¬ (𝜑 → ¬ 𝜓)
2 simpr-L2.2b 97 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜓)
31, 2ax-MP 14 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  mbirev-P2.1b  102  dfbiif-P2.3a  108
  Copyright terms: Public domain W3C validator