PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfbiif-P2.3a

Theorem dfbiif-P2.3a 108
Description: Sufficient Conditon for (i.e. "If" part of) df-bi-D2.1 107.
Assertion
Ref Expression
dfbiif-P2.3a (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))

Proof of Theorem dfbiif-P2.3a
StepHypRef Expression
1 df-bi-D2.1 107 . 2 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
21simpr-L2.2b.SH 98 1 (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  dfbialt-P2.4  110  bicmb-P2.5c  119
  Copyright terms: Public domain W3C validator