PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubr-P1.7a.SH

Theorem imsubr-P1.7a.SH 52
Description: Inference from imsubr-P1.7a 51.
Hypothesis
Ref Expression
imsubr-P1.7a.SH.1 (𝜑𝜓)
Assertion
Ref Expression
imsubr-P1.7a.SH ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem imsubr-P1.7a.SH
StepHypRef Expression
1 imsubr-P1.7a.SH.1 . 2 (𝜑𝜓)
2 imsubr-P1.7a 51 . 2 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
31, 2ax-MP 14 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  trnsp-P1.15b  78  trnsp-P1.15c  80
  Copyright terms: Public domain W3C validator