PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P1.15c

Theorem trnsp-P1.15c 80
Description: Transposition Variant C.
Assertion
Ref Expression
trnsp-P1.15c ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem trnsp-P1.15c
StepHypRef Expression
1 dneg-P1.13b 72 . . 3 (𝜓 → ¬ ¬ 𝜓)
21imsubr-P1.7a.SH 52 . 2 ((𝜑𝜓) → (𝜑 → ¬ ¬ 𝜓))
3 trnsp-P1.15a 76 . 2 ((𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 → ¬ 𝜑))
42, 3syl-P1.2 34 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  trnsp-P1.15c.SH  81  trnsp-P1.15c.AC.SH  82  import-L2.1a  91
  Copyright terms: Public domain W3C validator