PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P1.15c.SH

Theorem trnsp-P1.15c.SH 81
Description: Inference from trnsp-P1.15c 80.
Hypothesis
Ref Expression
trnsp-P1.15c.SH.1 (𝜑𝜓)
Assertion
Ref Expression
trnsp-P1.15c.SH 𝜓 → ¬ 𝜑)

Proof of Theorem trnsp-P1.15c.SH
StepHypRef Expression
1 trnsp-P1.15c.SH.1 . 2 (𝜑𝜓)
2 trnsp-P1.15c 80 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
31, 2ax-MP 14 1 𝜓 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  ndfalsee-P3.20  185
  Copyright terms: Public domain W3C validator