PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndfalsee-P3.20

Theorem ndfalsee-P3.20 185
Description: Natural Deduction: '' Elimination Rule.

Rules 19 and 20 allow us to write '(𝜑 → ⊥)' as a synonym for "'𝜑' is false" (or, more precisely, refutable).

Hypothesis
Ref Expression
ndfalsee-P3.20.1 (𝜑 → ⊥)
Assertion
Ref Expression
ndfalsee-P3.20 ¬ 𝜑

Proof of Theorem ndfalsee-P3.20
StepHypRef Expression
1 false-P2.15 159 . 2 ¬ ⊥
2 ndfalsee-P3.20.1 . . 3 (𝜑 → ⊥)
32trnsp-P1.15c.SH 81 . 2 (¬ ⊥ → ¬ 𝜑)
41, 3ax-MP 14 1 ¬ 𝜑
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  false-P3.45  353  falseimpoe-P4.4c  383  rcp-FALSENEGI1  433  truthtbltbif-P4.39b  508  truthtblfbit-P4.39c  509
  Copyright terms: Public domain W3C validator