PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truthtblfbit-P4.39c

Theorem truthtblfbit-P4.39c 509
Description: ( F T ) F.
Assertion
Ref Expression
truthtblfbit-P4.39c ((⊥ ↔ ⊤) ↔ ⊥)

Proof of Theorem truthtblfbit-P4.39c
StepHypRef Expression
1 true-P3.44 352 . . . . 5
21rcp-NDIMP0addall 207 . . . 4 ((⊥ ↔ ⊤) → ⊤)
3 ndbier-P3.15.CL 250 . . . 4 ((⊥ ↔ ⊤) → (⊤ → ⊥))
42, 3ndime-P3.6 171 . . 3 ((⊥ ↔ ⊤) → ⊥)
54ndfalsee-P3.20 185 . 2 ¬ (⊥ ↔ ⊤)
65nthmeqfalse-P4.21b 443 1 ((⊥ ↔ ⊤) ↔ ⊥)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator