| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > truthtbltbif-P4.39b | |||
| Description: ( T ↔ F ) ⇔ F. † |
| Ref | Expression |
|---|---|
| truthtbltbif-P4.39b | ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | true-P3.44 352 | . . . . 5 ⊢ ⊤ | |
| 2 | 1 | rcp-NDIMP0addall 207 | . . . 4 ⊢ ((⊤ ↔ ⊥) → ⊤) |
| 3 | ndbief-P3.14.CL 249 | . . . 4 ⊢ ((⊤ ↔ ⊥) → (⊤ → ⊥)) | |
| 4 | 2, 3 | ndime-P3.6 171 | . . 3 ⊢ ((⊤ ↔ ⊥) → ⊥) |
| 5 | 4 | ndfalsee-P3.20 185 | . 2 ⊢ ¬ (⊤ ↔ ⊥) |
| 6 | 5 | nthmeqfalse-P4.21b 443 | 1 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |