PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndbief-P3.14.CL

Theorem ndbief-P3.14.CL 249
Description: Closed Form of ndbief-P3.14 179.
Assertion
Ref Expression
ndbief-P3.14.CL ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem ndbief-P3.14.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ndbief-P3.14 179 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dfbi-P3.47  358  truthtbltbif-P4.39b  508
  Copyright terms: Public domain W3C validator