PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndbier-P3.15.CL

Theorem ndbier-P3.15.CL 250
Description: Closed Form of ndbier-P3.15 180.
Assertion
Ref Expression
ndbier-P3.15.CL ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem ndbier-P3.15.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((𝜑𝜓) → (𝜑𝜓))
21ndbier-P3.15 180 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dfbi-P3.47  358  truthtblfbit-P4.39c  509
  Copyright terms: Public domain W3C validator