PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nthmeqfalse-P4.21b

Theorem nthmeqfalse-P4.21b 443
Description: Any Refuted Statement is Logically Equivalent to ''.
Hypothesis
Ref Expression
nthmeqfalse-P4.21b.1 ¬ 𝜑
Assertion
Ref Expression
nthmeqfalse-P4.21b (𝜑 ↔ ⊥)

Proof of Theorem nthmeqfalse-P4.21b
StepHypRef Expression
1 nthmeqfalse-P4.21b.1 . . 3 ¬ 𝜑
21ndfalsei-P3.19 184 . 2 (𝜑 → ⊥)
3 rcp-NDASM1of1 192 . . 3 (⊥ → ⊥)
43falseimpoe-P4.4c 383 . 2 (⊥ → 𝜑)
52, 4rcp-NDBII0 239 1 (𝜑 ↔ ⊥)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  idornthml-P4.24a  448  idornthmr-P4.24b  449  truthtbltbif-P4.39b  508  truthtblfbit-P4.39c  509
  Copyright terms: Public domain W3C validator