| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nthmeqfalse-P4.21b | |||
| Description: Any Refuted Statement is Logically Equivalent to '⊥'. † |
| Ref | Expression |
|---|---|
| nthmeqfalse-P4.21b.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nthmeqfalse-P4.21b | ⊢ (𝜑 ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nthmeqfalse-P4.21b.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | ndfalsei-P3.19 184 | . 2 ⊢ (𝜑 → ⊥) |
| 3 | rcp-NDASM1of1 192 | . . 3 ⊢ (⊥ → ⊥) | |
| 4 | 3 | falseimpoe-P4.4c 383 | . 2 ⊢ (⊥ → 𝜑) |
| 5 | 2, 4 | rcp-NDBII0 239 | 1 ⊢ (𝜑 ↔ ⊥) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ↔ wff-bi 104 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: idornthml-P4.24a 448 idornthmr-P4.24b 449 truthtbltbif-P4.39b 508 truthtblfbit-P4.39c 509 |
| Copyright terms: Public domain | W3C validator |