PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truthtblfbif-P4.39d

Theorem truthtblfbif-P4.39d 510
Description: ( F F ) T.
Assertion
Ref Expression
truthtblfbif-P4.39d ((⊥ ↔ ⊥) ↔ ⊤)

Proof of Theorem truthtblfbif-P4.39d
StepHypRef Expression
1 biref-P3.33a 297 . 2 (⊥ ↔ ⊥)
21thmeqtrue-P4.21a 442 1 ((⊥ ↔ ⊥) ↔ ⊤)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator