PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FALSENEGI1

Theorem rcp-FALSENEGI1 433
Description: '¬' Introduction with ''.
Hypothesis
Ref Expression
rcp-FALSENEGI1.1 (𝛾₁ → ⊥)
Assertion
Ref Expression
rcp-FALSENEGI1 ¬ 𝛾₁

Proof of Theorem rcp-FALSENEGI1
StepHypRef Expression
1 rcp-FALSENEGI1.1 . 2 (𝛾₁ → ⊥)
21ndfalsee-P3.20 185 1 ¬ 𝛾₁
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  rcp-FALSERAA1  521
  Copyright terms: Public domain W3C validator