PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FALSENEGI2

Theorem rcp-FALSENEGI2 434
Description: '¬' Introduction with ''.
Hypothesis
Ref Expression
rcp-FALSENEGI2.1 ((𝛾₁𝛾₂) → ⊥)
Assertion
Ref Expression
rcp-FALSENEGI2 (𝛾₁ → ¬ 𝛾₂)

Proof of Theorem rcp-FALSENEGI2
StepHypRef Expression
1 rcp-FALSENEGI2.1 . 2 ((𝛾₁𝛾₂) → ⊥)
21falsenegi-P4.18 432 1 (𝛾₁ → ¬ 𝛾₂)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  dmorgarev-L4.2  453  rcp-FALSERAA2-P  522
  Copyright terms: Public domain W3C validator