| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-FALSENEGI3 | |||
| Description: '¬' Introduction with '⊥'. † |
| Ref | Expression |
|---|---|
| rcp-FALSENEGI3.1 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ⊥) |
| Ref | Expression |
|---|---|
| rcp-FALSENEGI3 | ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝛾₃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-FALSENEGI3.1 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ⊥) | |
| 2 | 1 | rcp-NDSEP3 186 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → ⊥) |
| 3 | 2 | falsenegi-P4.18 432 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝛾₃) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ⊥wff-false 157 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 |
| This theorem is referenced by: rcp-FALSERAA3 523 |
| Copyright terms: Public domain | W3C validator |