PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FALSENEGI3

Theorem rcp-FALSENEGI3 435
Description: '¬' Introduction with ''.
Hypothesis
Ref Expression
rcp-FALSENEGI3.1 ((𝛾₁𝛾₂𝛾₃) → ⊥)
Assertion
Ref Expression
rcp-FALSENEGI3 ((𝛾₁𝛾₂) → ¬ 𝛾₃)

Proof of Theorem rcp-FALSENEGI3
StepHypRef Expression
1 rcp-FALSENEGI3.1 . . 3 ((𝛾₁𝛾₂𝛾₃) → ⊥)
21rcp-NDSEP3 186 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → ⊥)
32falsenegi-P4.18 432 1 ((𝛾₁𝛾₂) → ¬ 𝛾₃)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-false 157  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by:  rcp-FALSERAA3  523
  Copyright terms: Public domain W3C validator