PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FALSERAA2-P

Theorem rcp-FALSERAA2-P 522
Description: Reductio ad Absurdum Using ''.
Hypothesis
Ref Expression
rcp-FALSERAA2.1 ((𝛾₁ ∧ ¬ 𝛾₂) → ⊥)
Assertion
Ref Expression
rcp-FALSERAA2-P (𝛾₁𝛾₂)

Proof of Theorem rcp-FALSERAA2-P
StepHypRef Expression
1 rcp-FALSERAA2.1 . . 3 ((𝛾₁ ∧ ¬ 𝛾₂) → ⊥)
21rcp-FALSENEGI2 434 . 2 (𝛾₁ → ¬ ¬ 𝛾₂)
32dnege-P3.30 276 1 (𝛾₁𝛾₂)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator