PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  false-P2.15

Theorem false-P2.15 159
Description: '' is refutable.
Assertion
Ref Expression
false-P2.15 ¬ ⊥

Proof of Theorem false-P2.15
StepHypRef Expression
1 true-P2.14 156 . 2
2 df-false-D2.5 158 . . . 4 (⊥ ↔ ¬ ⊤)
32bifwd-P2.5a.SH 112 . . 3 (⊥ → ¬ ⊤)
43trnsp-P1.15a.SH 77 . 2 (⊤ → ¬ ⊥)
51, 4ax-MP 14 1 ¬ ⊥
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  ndfalsee-P3.20  185
  Copyright terms: Public domain W3C validator