| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > false-P2.15 | |||
| Description: '⊥' is refutable. |
| Ref | Expression |
|---|---|
| false-P2.15 | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | true-P2.14 156 | . 2 ⊢ ⊤ | |
| 2 | df-false-D2.5 158 | . . . 4 ⊢ (⊥ ↔ ¬ ⊤) | |
| 3 | 2 | bifwd-P2.5a.SH 112 | . . 3 ⊢ (⊥ → ¬ ⊤) |
| 4 | 3 | trnsp-P1.15a.SH 77 | . 2 ⊢ (⊤ → ¬ ⊥) |
| 5 | 1, 4 | ax-MP 14 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ⊤wff-true 153 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: ndfalsee-P3.20 185 |
| Copyright terms: Public domain | W3C validator |