PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  true-P2.14

Theorem true-P2.14 156
Description: '' is a theorem.
Assertion
Ref Expression
true-P2.14

Proof of Theorem true-P2.14
StepHypRef Expression
1 id-P1.4 36 . 2 (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)
2 df-true-D2.4 155 . . 3 (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
32birev-P2.5b.SH 116 . 2 ((∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) → ⊤)
41, 3ax-MP 14 1
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  false-P2.15  159  ndtruee-P3.18  183
  Copyright terms: Public domain W3C validator