PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubr-P1.7a

Theorem imsubr-P1.7a 51
Description: Implication Substitution (right).

The other related rule is imsubl-P1.7b 54.

Assertion
Ref Expression
imsubr-P1.7a ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem imsubr-P1.7a
StepHypRef Expression
1 ax-L1 11 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
21axL2.AC.SH 46 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  imsubr-P1.7a.SH  52  imsubr-P1.7a.AC.SH  53  imsubl-P1.7b  54
  Copyright terms: Public domain W3C validator