PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL2.AC.SH

Theorem axL2.AC.SH 46
Description: Deductive Form of ax-L2 12.
Hypothesis
Ref Expression
axL2.AC.SH.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
axL2.AC.SH (𝛾 → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem axL2.AC.SH
StepHypRef Expression
1 axL2.AC.SH.1 . 2 (𝛾 → (𝜑 → (𝜓𝜒)))
2 ax-L2 12 . . . 4 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
32axL1.SH 30 . . 3 (𝛾 → ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒))))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑 → (𝜓𝜒))) → (𝛾 → ((𝜑𝜓) → (𝜑𝜒))))
51, 4ax-MP 14 1 (𝛾 → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  imcomm-P1.6  48  imsubr-P1.7a  51
  Copyright terms: Public domain W3C validator