| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imcomm-P1.6 | |||
| Description: Commutation of Antecedents. |
| Ref | Expression |
|---|---|
| imcomm-P1.6 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L2 12 | . . . 4 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 2 | 1 | axL1.AC.SH 45 | . . 3 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
| 3 | 2 | axL2.AC.SH 46 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜓 → (𝜑 → 𝜓)) → (𝜓 → (𝜑 → 𝜒)))) |
| 4 | ax-L1 11 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | mae-P1.1 33 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-MP 14 |
| This theorem is referenced by: imcomm-P1.6.SH 49 imcomm-P1.6.AC.SH 50 maet-P1.10 64 |
| Copyright terms: Public domain | W3C validator |