PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imcomm-P1.6

Theorem imcomm-P1.6 48
Description: Commutation of Antecedents.
Assertion
Ref Expression
imcomm-P1.6 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))

Proof of Theorem imcomm-P1.6
StepHypRef Expression
1 ax-L2 12 . . . 4 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
21axL1.AC.SH 45 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜓 → ((𝜑𝜓) → (𝜑𝜒))))
32axL2.AC.SH 46 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜓 → (𝜑𝜓)) → (𝜓 → (𝜑𝜒))))
4 ax-L1 11 . 2 (𝜓 → (𝜑𝜓))
53, 4mae-P1.1 33 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  imcomm-P1.6.SH  49  imcomm-P1.6.AC.SH  50  maet-P1.10  64
  Copyright terms: Public domain W3C validator