| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alloverimex-P5 | |||
| Description: Alternate version of alloverim-P5 588 that produces existential quantifiers. |
| Ref | Expression |
|---|---|
| alloverimex-P5.1 | ⊢ (𝛾 → ∀𝑥(𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| alloverimex-P5 | ⊢ (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alloverimex-P5.1 | . . . . 5 ⊢ (𝛾 → ∀𝑥(𝜑 → 𝜓)) | |
| 2 | trnspeq-P4c 537 | . . . . . . 7 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
| 3 | 2 | suballinf-P5 594 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ ∀𝑥(¬ 𝜓 → ¬ 𝜑)) |
| 4 | 3 | rcp-NDIMP0addall 207 | . . . . 5 ⊢ (𝛾 → (∀𝑥(𝜑 → 𝜓) ↔ ∀𝑥(¬ 𝜓 → ¬ 𝜑))) |
| 5 | 1, 4 | bimpf-P4 531 | . . . 4 ⊢ (𝛾 → ∀𝑥(¬ 𝜓 → ¬ 𝜑)) |
| 6 | 5 | alloverim-P5 588 | . . 3 ⊢ (𝛾 → (∀𝑥 ¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
| 7 | allnegex-P5 597 | . . . 4 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 8 | 7 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)) |
| 9 | allnegex-P5 597 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 10 | 9 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)) |
| 11 | 6, 8, 10 | subimd2-P4 544 | . 2 ⊢ (𝛾 → (¬ ∃𝑥𝜓 → ¬ ∃𝑥𝜑)) |
| 12 | 11 | trnsp-P3.31d 288 | 1 ⊢ (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: alloverimex-P5.RC 602 alloverimex-P5.CL 604 dalloverimex-P5 605 alloverimex-P5.GENV 622 alloverimex-P5.GENF 748 |
| Copyright terms: Public domain | W3C validator |