PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverimex-P5

Theorem alloverimex-P5 601
Description: Alternate version of alloverim-P5 588 that produces existential quantifiers.
Hypothesis
Ref Expression
alloverimex-P5.1 (𝛾 → ∀𝑥(𝜑𝜓))
Assertion
Ref Expression
alloverimex-P5 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem alloverimex-P5
StepHypRef Expression
1 alloverimex-P5.1 . . . . 5 (𝛾 → ∀𝑥(𝜑𝜓))
2 trnspeq-P4c 537 . . . . . . 7 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
32suballinf-P5 594 . . . . . 6 (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜓 → ¬ 𝜑))
43rcp-NDIMP0addall 207 . . . . 5 (𝛾 → (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜓 → ¬ 𝜑)))
51, 4bimpf-P4 531 . . . 4 (𝛾 → ∀𝑥𝜓 → ¬ 𝜑))
65alloverim-P5 588 . . 3 (𝛾 → (∀𝑥 ¬ 𝜓 → ∀𝑥 ¬ 𝜑))
7 allnegex-P5 597 . . . 4 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
87rcp-NDIMP0addall 207 . . 3 (𝛾 → (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓))
9 allnegex-P5 597 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
109rcp-NDIMP0addall 207 . . 3 (𝛾 → (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑))
116, 8, 10subimd2-P4 544 . 2 (𝛾 → (¬ ∃𝑥𝜓 → ¬ ∃𝑥𝜑))
1211trnsp-P3.31d 288 1 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  alloverimex-P5.RC  602  alloverimex-P5.CL  604  dalloverimex-P5  605  alloverimex-P5.GENV  622  alloverimex-P5.GENF  748
  Copyright terms: Public domain W3C validator