PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverimex-P5.RC

Theorem alloverimex-P5.RC 602
Description: Inference Form of alloverimex-P5 601.
Hypothesis
Ref Expression
alloverimex-P5.RC.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
alloverimex-P5.RC (∃𝑥𝜑 → ∃𝑥𝜓)

Proof of Theorem alloverimex-P5.RC
StepHypRef Expression
1 alloverimex-P5.RC.1 . . . 4 𝑥(𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → ∀𝑥(𝜑𝜓))
32alloverimex-P5 601 . 2 (⊤ → (∃𝑥𝜑 → ∃𝑥𝜓))
43ndtruee-P3.18 183 1 (∃𝑥𝜑 → ∃𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-true 153  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  alloverimex-P5.RC.GEN  603
  Copyright terms: Public domain W3C validator