| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > allnegex-P5 | |||
| Description: "For all not"
is Equivalent to "Does not exist".
Dual of exnegall-P5 598. |
| Ref | Expression |
|---|---|
| allnegex-P5 | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exists-D5.1 596 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | subneg-P3.39.RC 324 | . . 3 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ¬ ∀𝑥 ¬ 𝜑) |
| 3 | dnegeq-P4.10 418 | . . 3 ⊢ (¬ ¬ ∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑) | |
| 4 | 2, 3 | bitrns-P3.33c.RC 303 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) |
| 5 | 4 | bisym-P3.33b.RC 299 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: alloverimex-P5 601 qimeqallhalf-P5 609 exiisub-P5 655 lemma-L5.03a 666 gennexw-P6 679 dfnfreealt-P6 683 gennex-P6 738 qcexandr-P6 761 |
| Copyright terms: Public domain | W3C validator |