PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allnegex-P5

Theorem allnegex-P5 597
Description: "For all not" is Equivalent to "Does not exist".

Dual of exnegall-P5 598.

Assertion
Ref Expression
allnegex-P5 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)

Proof of Theorem allnegex-P5
StepHypRef Expression
1 df-exists-D5.1 596 . . . 4 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
21subneg-P3.39.RC 324 . . 3 (¬ ∃𝑥𝜑 ↔ ¬ ¬ ∀𝑥 ¬ 𝜑)
3 dnegeq-P4.10 418 . . 3 (¬ ¬ ∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)
42, 3bitrns-P3.33c.RC 303 . 2 (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑)
54bisym-P3.33b.RC 299 1 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  alloverimex-P5  601  qimeqallhalf-P5  609  exiisub-P5  655  lemma-L5.03a  666  gennexw-P6  679  dfnfreealt-P6  683  gennex-P6  738  qcexandr-P6  761
  Copyright terms: Public domain W3C validator