PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennex-P6

Theorem gennex-P6 738
Description: The WFF '¬ ∃𝑥𝜑' is General For '𝑥'.

See gennexw-P6 679 for a version that requires only FOL axioms.

Assertion
Ref Expression
gennex-P6 (¬ ∃𝑥𝜑 → ∀𝑥 ¬ ∃𝑥𝜑)

Proof of Theorem gennex-P6
StepHypRef Expression
1 genall-P6 737 . 2 (∀𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
2 allnegex-P5 597 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
32suballinf-P5 594 . 2 (∀𝑥𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ ∃𝑥𝜑)
41, 2, 3subimd2-P4.RC 545 1 (¬ ∃𝑥𝜑 → ∀𝑥 ¬ ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator