PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allcomm-P6

Theorem allcomm-P6 739
Description: Universal Quantifier Commutivity.

See allcommw-P5 669 for a version that requires only FOL axioms.

Assertion
Ref Expression
allcomm-P6 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem allcomm-P6
StepHypRef Expression
1 ax-L11 28 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-L11 28 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2rcp-NDBII0 239 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L11 28
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  excomm-P6  740  nfrall2-P6  743  nfrall2d-P6  819
  Copyright terms: Public domain W3C validator