| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > allcomm-P6 | |||
| Description: Universal Quantifier
Commutivity.
See allcommw-P5 669 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| allcomm-P6 | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L11 28 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-L11 28 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L11 28 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 |
| This theorem is referenced by: excomm-P6 740 nfrall2-P6 743 nfrall2d-P6 819 |
| Copyright terms: Public domain | W3C validator |