PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  genall-P6

Theorem genall-P6 737
Description: The WFF '𝑥𝜑' is General For '𝑥'.

See genallw-P6 676 for a version that requires only FOL axioms.

Assertion
Ref Expression
genall-P6 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem genall-P6
StepHypRef Expression
1 gennall-P6 730 . . . 4 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
21gennfr-P6 734 . . 3 𝑥 ¬ ∀𝑥𝜑
3 nfrneg-P6 688 . . 3 (Ⅎ𝑥 ¬ ∀𝑥𝜑 ↔ Ⅎ𝑥𝑥𝜑)
42, 3bimpf-P4.RC 532 . 2 𝑥𝑥𝜑
54nfrgen-P6 733 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  gennex-P6  738  nfrall1-P6  741
  Copyright terms: Public domain W3C validator