| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > genall-P6 | |||
| Description: The WFF '∀𝑥𝜑' is General For '𝑥'.
See genallw-P6 676 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| genall-P6 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gennall-P6 730 | . . . 4 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 2 | 1 | gennfr-P6 734 | . . 3 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
| 3 | nfrneg-P6 688 | . . 3 ⊢ (Ⅎ𝑥 ¬ ∀𝑥𝜑 ↔ Ⅎ𝑥∀𝑥𝜑) | |
| 4 | 2, 3 | bimpf-P4.RC 532 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| 5 | 4 | nfrgen-P6 733 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: gennex-P6 738 nfrall1-P6 741 |
| Copyright terms: Public domain | W3C validator |