PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exgennfr-P6

Theorem exgennfr-P6 736
Description: Dual Form of gennfr-P6 734.

See exgennfrw-P6 697 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
exgennfr-P6.1 (∃𝑥𝜑𝜑)
Assertion
Ref Expression
exgennfr-P6 𝑥𝜑

Proof of Theorem exgennfr-P6
StepHypRef Expression
1 exgennfr-P6.1 . . . 4 (∃𝑥𝜑𝜑)
2 lemma-L5.01a 600 . . . 4 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2bimpf-P4.RC 532 . . 3 𝜑 → ∀𝑥 ¬ 𝜑)
43gennfr-P6 734 . 2 𝑥 ¬ 𝜑
5 nfrneg-P6 688 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
64, 5bimpf-P4.RC 532 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrex2-P6  744
  Copyright terms: Public domain W3C validator