| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrex2-P6 | |||
| Description: ENF Over Existential
Quantifier (different variable).
See nfrex2w-P6 695 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| nfrex2-P6.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrex2-P6 | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomm-P6 740 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
| 2 | 1 | rcp-NDBIEF0 240 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| 3 | nfrex2-P6.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | nfrexgen-P6 735 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) |
| 5 | 4 | alloverimex-P5.RC.GEN 603 | . . 3 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑦𝜑) |
| 6 | 2, 5 | syl-P3.24.RC 260 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦𝜑) |
| 7 | 6 | exgennfr-P6 736 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: splitelof-P6 778 |
| Copyright terms: Public domain | W3C validator |