PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrex2-P6

Theorem nfrex2-P6 744
Description: ENF Over Existential Quantifier (different variable).

See nfrex2w-P6 695 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
nfrex2-P6.1 𝑥𝜑
Assertion
Ref Expression
nfrex2-P6 𝑥𝑦𝜑
Distinct variable group:   𝑥,𝑦

Proof of Theorem nfrex2-P6
StepHypRef Expression
1 excomm-P6 740 . . . 4 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
21rcp-NDBIEF0 240 . . 3 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
3 nfrex2-P6.1 . . . . 5 𝑥𝜑
43nfrexgen-P6 735 . . . 4 (∃𝑥𝜑𝜑)
54alloverimex-P5.RC.GEN 603 . . 3 (∃𝑦𝑥𝜑 → ∃𝑦𝜑)
62, 5syl-P3.24.RC 260 . 2 (∃𝑥𝑦𝜑 → ∃𝑦𝜑)
76exgennfr-P6 736 1 𝑥𝑦𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  splitelof-P6  778
  Copyright terms: Public domain W3C validator