PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrgen-P6

Theorem nfrgen-P6 733
Description: ENF in General for.

If '𝑥' is effectively not free in '𝜑', then '𝜑' is general for '𝑥'.

See nfrgenw-P6 684 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
nfrgen-P6.1 𝑥𝜑
Assertion
Ref Expression
nfrgen-P6 (𝜑 → ∀𝑥𝜑)

Proof of Theorem nfrgen-P6
StepHypRef Expression
1 exi-P6 718 . 2 (𝜑 → ∃𝑥𝜑)
2 nfrgen-P6.1 . . 3 𝑥𝜑
3 dfnfreealt-P6 683 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
42, 3bimpf-P4.RC 532 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
51, 4syl-P3.24.RC 260 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrexgen-P6  735  genall-P6  737  nfrall2-P6  743  allic-P6  745
  Copyright terms: Public domain W3C validator