PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrall1-P6

Theorem nfrall1-P6 741
Description: ENF Over Universal Quantifier (same variable).

See nfrall1w-P6 692 for a version that requires only FOL axioms.

Assertion
Ref Expression
nfrall1-P6 𝑥𝑥𝜑

Proof of Theorem nfrall1-P6
StepHypRef Expression
1 genall-P6 737 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21gennfr-P6 734 1 𝑥𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  lemma-L6.05a  764  lemma-L6.06a  766  lemma-L6.07a-L1  770  lemma-L6.07a-L2  771  psuball1-P6  793  nfrnfr-P6  821  ndnfrall1-P7.7  832
  Copyright terms: Public domain W3C validator