| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrall1-P6 | |||
| Description: ENF Over Universal
Quantifier (same variable).
See nfrall1w-P6 692 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| nfrall1-P6 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genall-P6 737 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | 1 | gennfr-P6 734 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: lemma-L6.05a 764 lemma-L6.06a 766 lemma-L6.07a-L1 770 lemma-L6.07a-L2 771 psuball1-P6 793 nfrnfr-P6 821 ndnfrall1-P7.7 832 |
| Copyright terms: Public domain | W3C validator |