PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exiisub-P5

Theorem exiisub-P5 655
Description: Existential Quantifier Introduction Law with Implicit Substitution.

'𝑥' cannot occur in either '𝑡' or '𝜓'.

This is the dual of specisub-P5 654.

The hypothesis is fulfilled when every free occurence of '𝑥' in '𝜑' is replaced with the term '𝑡', and every bound occurence of '𝑥' is replaced with a fresh variable (one for each quantifier). The resulting WFF is '𝜓'. '𝑥' cannot occur in '𝑡' either, or it would occur in '𝜓' wherever '𝑥' was replaced.

Hypothesis
Ref Expression
exiisub-P5.1 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
exiisub-P5 (𝜓 → ∃𝑥𝜑)
Distinct variable groups:   𝜓,𝑥   𝑡,𝑥

Proof of Theorem exiisub-P5
StepHypRef Expression
1 exiisub-P5.1 . . . . 5 (𝑥 = 𝑡 → (𝜑𝜓))
21subneg-P3.39 323 . . . 4 (𝑥 = 𝑡 → (¬ 𝜑 ↔ ¬ 𝜓))
32specisub-P5 654 . . 3 (∀𝑥 ¬ 𝜑 → ¬ 𝜓)
4 allnegex-P5 597 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
53, 4subiml2-P4.RC 541 . 2 (¬ ∃𝑥𝜑 → ¬ 𝜓)
65trnsp-P3.31d.RC 289 1 (𝜓 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qremexv-P5  657
  Copyright terms: Public domain W3C validator