| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qremexv-P5 | |||
| Description: Existential Quantifier
Removal (variable restriction).
'𝑥' cannot occur in '𝜑'. The most general form is qremex-P6 723. |
| Ref | Expression |
|---|---|
| qremexv-P5 | ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL5ex-P5 613 | . 2 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 2 | biref-P3.33a 297 | . . . 4 ⊢ (𝜑 ↔ 𝜑) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) |
| 4 | 3 | exiisub-P5 655 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) |
| 5 | 1, 4 | rcp-NDBII0 239 | 1 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qcallimrv-P5 671 qcallimlv-P5 673 |
| Copyright terms: Public domain | W3C validator |