PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qremexv-P5

Theorem qremexv-P5 657
Description: Existential Quantifier Removal (variable restriction).

'𝑥' cannot occur in '𝜑'.

The most general form is qremex-P6 723.

Assertion
Ref Expression
qremexv-P5 (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem qremexv-P5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axL5ex-P5 613 . 2 (∃𝑥𝜑𝜑)
2 biref-P3.33a 297 . . . 4 (𝜑𝜑)
32rcp-NDIMP0addall 207 . . 3 (𝑥 = 𝑦 → (𝜑𝜑))
43exiisub-P5 655 . 2 (𝜑 → ∃𝑥𝜑)
51, 4rcp-NDBII0 239 1 (∃𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qcallimrv-P5  671  qcallimlv-P5  673
  Copyright terms: Public domain W3C validator