PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qcallimrv-P5

Theorem qcallimrv-P5 671
Description: Quantifier Collection Law: Universal Quantifier Right on Implication. (variable restriction).

'𝑥' cannot occur in '𝜑'.

The most general form is qcallimr-P6 757.

Assertion
Ref Expression
qcallimrv-P5 ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))
Distinct variable group:   𝜑,𝑥

Proof of Theorem qcallimrv-P5
StepHypRef Expression
1 qimeqallav-P5 618 . . 3 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
21bisym-P3.33b.RC 299 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))
3 qremexv-P5 657 . . 3 (∃𝑥𝜑𝜑)
43subiml-P3.40a.RC 326 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))
52, 4subbil2-P4.RC 547 1 ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  example-E5.04a  675
  Copyright terms: Public domain W3C validator