| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qcallimrv-P5 | |||
| Description: Quantifier Collection
Law: Universal Quantifier Right on Implication.
(variable restriction).
'𝑥' cannot occur in '𝜑'. The most general form is qcallimr-P6 757. |
| Ref | Expression |
|---|---|
| qcallimrv-P5 | ⊢ ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qimeqallav-P5 618 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) | |
| 2 | 1 | bisym-P3.33b.RC 299 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓)) |
| 3 | qremexv-P5 657 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) | |
| 4 | 3 | subiml-P3.40a.RC 326 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| 5 | 2, 4 | subbil2-P4.RC 547 | 1 ⊢ ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: example-E5.04a 675 |
| Copyright terms: Public domain | W3C validator |