PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  excommw-P5

Theorem excommw-P5 670
Description: Existential Quantifier Commutivity (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)', and the existance of '𝜑₂(𝑦₁)' as a replacement for '𝜑(𝑦)'.

The form not requiring any hypotheses, but relying on an additional axiom is excomm-P6 740.

Hypotheses
Ref Expression
excommw-P5.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
excommw-P5.2 (𝑦 = 𝑦₁ → (𝜑𝜑₂))
Assertion
Ref Expression
excommw-P5 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝜑,𝑦₁   𝜑₂,𝑦   𝑥,𝑦,𝑥₁,𝑦₁

Proof of Theorem excommw-P5
StepHypRef Expression
1 excommw-P5.1 . . 3 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21lemma-L5.05a 668 . 2 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
3 excommw-P5.2 . . 3 (𝑦 = 𝑦₁ → (𝜑𝜑₂))
43lemma-L5.05a 668 . 2 (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑)
52, 4rcp-NDBII0 239 1 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator