PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  specisub-P5

Theorem specisub-P5 654
Description: Specialization Theorem with Implicit Substitution.

'𝑥' cannot occur in either '𝑡' or '𝜓'.

The hypothesis is fulfilled when every free occurence of '𝑥' in '𝜑' is replaced with the term '𝑡', and every bound occurence of '𝑥' is replaced with a fresh variable (one for each quantifier). The resulting WFF is '𝜓'. After this operation, '𝑥' will not occur in '𝜓'. '𝑥' cannot occur in '𝑡' either, or it would occur in '𝜓' wherever '𝑥' was replaced.

Hypothesis
Ref Expression
specisub-P5.1 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
specisub-P5 (∀𝑥𝜑𝜓)
Distinct variable groups:   𝜓,𝑥   𝑡,𝑥

Proof of Theorem specisub-P5
StepHypRef Expression
1 specisub-P5.1 . . 3 (𝑥 = 𝑡 → (𝜑𝜓))
21ndbief-P3.14 179 . 2 (𝑥 = 𝑡 → (𝜑𝜓))
32lemma-L5.02a 653 1 (∀𝑥𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  exiisub-P5  655  qremallv-P5  656  lemma-L5.04a  667
  Copyright terms: Public domain W3C validator