PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverimex-P5.GENV

Theorem alloverimex-P5.GENV 622
Description: alloverimex-P5 601 with Generalization (variable restriction). The most general form is alloverimex-P5.GENF 748.
Hypothesis
Ref Expression
alloverimex-P5.GENV.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
alloverimex-P5.GENV (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝛾,𝑥

Proof of Theorem alloverimex-P5.GENV
StepHypRef Expression
1 alloverimex-P5.GENV.1 . . 3 (𝛾 → (𝜑𝜓))
21allicv-P5 614 . 2 (𝛾 → ∀𝑥(𝜑𝜓))
32alloverimex-P5 601 1 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subexv-P5  624  eqmiddle-P6  708
  Copyright terms: Public domain W3C validator