PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL12-P7

Theorem axL12-P7 982
Description: ax-L12 29 Derived from Natural Deduction Rules.

'𝑥' cannot occur in '𝑡'.

Assertion
Ref Expression
axL12-P7 (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
Distinct variable group:   𝑡,𝑥

Proof of Theorem axL12-P7
StepHypRef Expression
1 ndpsub2-P7.14 839 . . 3 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
21ndbief-P3.14 179 . 2 (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))
3 dfpsubv-P7 977 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
43subimr-P3.40b.RC 328 . . 3 ((𝜑 → [𝑡 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
54subimr-P3.40b.RC 328 . 2 ((𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
62, 5bimpf-P4.RC 532 1 (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator