PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL11ex-P7

Theorem axL11ex-P7 981
Description: Existential Form of axL11-P7 980.
Assertion
Ref Expression
axL11ex-P7 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem axL11ex-P7
StepHypRef Expression
1 ndnfrex1-P7.8 833 . . 3 𝑥𝑥𝜑
21ndnfrex2-P7.10.RC 881 . 2 𝑥𝑦𝑥𝜑
3 exi-P7.CL 952 . . 3 (𝜑 → ∃𝑥𝜑)
43alloverimex-P7.GENF.RC 950 . 2 (∃𝑦𝜑 → ∃𝑦𝑥𝜑)
52, 4exia-P7.RC 954 1 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  excomm-P7  1059
  Copyright terms: Public domain W3C validator