PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  negbicancel-P4.11

Theorem negbicancel-P4.11 419
Description: Negation Cancellation Rule.
Hypothesis
Ref Expression
negbicancel-P4.11.1 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
Assertion
Ref Expression
negbicancel-P4.11 (𝛾 → (𝜑𝜓))

Proof of Theorem negbicancel-P4.11
StepHypRef Expression
1 negbicancel-P4.11.1 . . 3 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
21subneg-P3.39 323 . 2 (𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓))
3 dnegeq-P4.10 418 . . . . 5 (¬ ¬ 𝜑𝜑)
43rcp-NDIMP0addall 207 . . . 4 (𝛾 → (¬ ¬ 𝜑𝜑))
5 dnegeq-P4.10 418 . . . . 5 (¬ ¬ 𝜓𝜓)
65rcp-NDIMP0addall 207 . . . 4 (𝛾 → (¬ ¬ 𝜓𝜓))
74, 6subbid-P3.41c 336 . . 3 (𝛾 → ((¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓) ↔ (𝜑𝜓)))
87ndbief-P3.14 179 . 2 (𝛾 → ((¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓) → (𝜑𝜓)))
92, 8ndime-P3.6 171 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  negbicancel-P4.11.RC  420
  Copyright terms: Public domain W3C validator