| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > negbicancelint-P4.14 | |||
| Description: Negation Cancellation Rule derivalbe with intuitionist logic. † |
| Ref | Expression |
|---|---|
| negbicancelint-P4.14.1 | ⊢ (𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| negbicancelint-P4.14 | ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negbicancelint-P4.14.1 | . . 3 ⊢ (𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓)) | |
| 2 | 1 | subneg-P3.39 323 | . 2 ⊢ (𝛾 → (¬ ¬ ¬ 𝜑 ↔ ¬ ¬ ¬ 𝜓)) |
| 3 | dnegeqint-P4.13 423 | . . . . 5 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) | |
| 4 | 3 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (𝛾 → (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑)) |
| 5 | dnegeqint-P4.13 423 | . . . . 5 ⊢ (¬ ¬ ¬ 𝜓 ↔ ¬ 𝜓) | |
| 6 | 5 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (𝛾 → (¬ ¬ ¬ 𝜓 ↔ ¬ 𝜓)) |
| 7 | 4, 6 | subbid-P3.41c 336 | . . 3 ⊢ (𝛾 → ((¬ ¬ ¬ 𝜑 ↔ ¬ ¬ ¬ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))) |
| 8 | 7 | ndbief-P3.14 179 | . 2 ⊢ (𝛾 → ((¬ ¬ ¬ 𝜑 ↔ ¬ ¬ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))) |
| 9 | 2, 8 | ndime-P3.6 171 | 1 ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: negbicancelint-P4.14.RC 425 |
| Copyright terms: Public domain | W3C validator |