PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  negbicancelint-P4.14

Theorem negbicancelint-P4.14 424
Description: Negation Cancellation Rule derivalbe with intuitionist logic.
Hypothesis
Ref Expression
negbicancelint-P4.14.1 (𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓))
Assertion
Ref Expression
negbicancelint-P4.14 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem negbicancelint-P4.14
StepHypRef Expression
1 negbicancelint-P4.14.1 . . 3 (𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓))
21subneg-P3.39 323 . 2 (𝛾 → (¬ ¬ ¬ 𝜑 ↔ ¬ ¬ ¬ 𝜓))
3 dnegeqint-P4.13 423 . . . . 5 (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑)
43rcp-NDIMP0addall 207 . . . 4 (𝛾 → (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑))
5 dnegeqint-P4.13 423 . . . . 5 (¬ ¬ ¬ 𝜓 ↔ ¬ 𝜓)
65rcp-NDIMP0addall 207 . . . 4 (𝛾 → (¬ ¬ ¬ 𝜓 ↔ ¬ 𝜓))
74, 6subbid-P3.41c 336 . . 3 (𝛾 → ((¬ ¬ ¬ 𝜑 ↔ ¬ ¬ ¬ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)))
87ndbief-P3.14 179 . 2 (𝛾 → ((¬ ¬ ¬ 𝜑 ↔ ¬ ¬ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)))
92, 8ndime-P3.6 171 1 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  negbicancelint-P4.14.RC  425
  Copyright terms: Public domain W3C validator