PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  negbicancelint-P4.14.RC

Theorem negbicancelint-P4.14.RC 425
Description: Inference Form of negbicancelint-P4.14 424.
Hypothesis
Ref Expression
negbicancelint-P4.14.RC.1 (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓)
Assertion
Ref Expression
negbicancelint-P4.14.RC 𝜑 ↔ ¬ 𝜓)

Proof of Theorem negbicancelint-P4.14.RC
StepHypRef Expression
1 negbicancelint-P4.14.RC.1 . . . 4 (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓))
32negbicancelint-P4.14 424 . 2 (⊤ → (¬ 𝜑 ↔ ¬ 𝜓))
43ndtruee-P3.18 183 1 𝜑 ↔ ¬ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator